

Articles

W, MW, kWh ... comment s'y retrouver?

L'énergie est le produit de la puissance (W) par le temps (h). $\mathbf{W} \times \mathbf{h} = \mathbf{W}\mathbf{h}$

Par exemple un aspirateur de 2000 W qui fonctionne à pleine puissance pendant $\frac{1}{2}$ h consomme en énergie : **2000 W** * $\frac{1}{2}$ h = **1000 Wh ou 1 kWh**

Autre exemple : une bouilloire, également d'une puissance de 2000 W, qui fonctionne

pendant 3 minutes (0,05 h) consomme **2000W** * **0,05** h = **100 Wh ou 0,1kWh.**

En fonction du contexte, on utilise des W, des kW, des MW voire de GW pour exprimer la puissance avec les équivalences suivantes :

1000 W = 1 kW 1000000 W = 1000 kW = 1 MW 1000 MW = 1 GW

Idem pour l'énergie :

1000 Wh = 1 kWh 1000000 Wh = 1.000 kWh = 1 MWh 1000 MWh = 1 GWh1000 GWh = 1 TWh

	Puissance	Energie
ampoule LED	6 W	6 kWh/an (utilisée en moyenne 3h/jour ou 1000 h/an)
bouilloire	2000 W ou 2 kW	60 kWh/an (utilisée 5 min/jour ou 30h/an)
Modem	10 W	87,6 kWh/an (allumé toute l'année)
Borne de recharge	11 kW	fournit 11 kWh en 1h
Panneaux photovoltaïques	1 kWc	production de 900 à 1000 kWh/an en Belgique
Eolienne terrestre	4 MW	production de 7000 MWh/an (avec une facteur de charge de 20% : produit l'équivalent de 1750h à puissance nominale)
Eolienne offshore	10 MW	production de 33000 MWh/an (facteur de charge de 38% : produit l'équivalent de 3300h à puissance nominale)
Réacteur nucléaire	1008 MW ou 1 GW	production de 8000 GWh ou 8 TWh (8 milliards de kWh) en ce qui correspond à 8000h de fonctionnement

La plupart des appareils n'utilisent pas leur puissance maximale pendant toute la durée de leur utilisation, par exemple :

- Le lave-linge utilise sa pleine puissance (2000 à 2500 W) pour chauffer l'eau mais ensuite la rotation du tambour ne demande « que » 150 à 200 W.
- Un fer à repasser utilise 2000 W pour chauffer et, une fois chaud, il ne consomme plus jusqu'à ce l'écart entre la température souhaitée et la température observée soit trop important.

 Un réfrigérateur a une puissance de 100 à 150 W mais il n'utilise pas cette puissance en continu : il est thermostatisé et ce n'est que quand l'écart par rapport à la consigne est trop important que le compresseur se met en route. Il consomme entre 100 et 200 kWh/an

Voici une consommation moyenne de quelques appareils courants en kWh/an, en fonction de leur utilisation :

|center>

Des réponses personnalisées à vos questions : 081 730 730 | <u>info@ecoconso.be</u> | <u>www.ecoconso.be</u>

Source URL: https://www.ecoconso.be/content/w-mw-kwh-comment-sy-retrouver